
The Custom Scalar Checklist

I hope you find this checklist useful! It's a repeatable process for refining your GraphQL
Schema to make your Elm app easier to maintain and less likely to have bugs!

Here is some background on why: https://incrementalelm.com/custom-scalar-checklist

Now let's get to the steps!

There are three sections:

1. Turn your schema into a todo list!
2. Identify the "Contract Category" (if any)
3. Use Some Custom Scalars!

1. Turn your schema into a todo list!

In this section we'll copy-paste your entire GraphQL Schema into your favorite editor, and
clear out some distractions! That will be our todo list for finding potential Custom Scalars.

 Get your GraphQL Schema in SDL notation. If you don't have it in a file that you can copy
easily, you can just follow these two steps

 Open Graphiql (or GraphQL playground) so you can run a query against your
GraphQL API
 Run this introspection query
 Copy-paste the JSON from the introspection query into Sandbox - CodeSandbox

 Copy-paste the SDL notation of your entire GraphQL Schema into a text editor
 Delete everything from the Schema except for the fields and arguments that include
one of the following Scalars: String , Float , Int , Id

You should be left only with things like this:

url: String

phoneNumbers: [String!]!

rating: Float!

id: Id

Now this is our todo list of items that could potentially be improved by introducing a

https://incrementalelm.com/custom-scalar-checklist
https://gist.githubusercontent.com/dillonkearns/ef89afd088442e0183abf431885b4fa8/raw/0eb1a8a67cbd57ee11a73550eb1c2ca13efb9885/introspect.graphql
https://gist.githubusercontent.com/dillonkearns/ef89afd088442e0183abf431885b4fa8/raw/0eb1a8a67cbd57ee11a73550eb1c2ca13efb9885/introspect.graphql
https://pnmoxolx4.codesandbox.io/
https://pnmoxolx4.codesandbox.io/

Custom Scalar!

2. Identify the "Contract Category" (if any)

Custom Scalars are a way to describe where a field can be used, how to use it, or what
the field represents. This section describes all the Contract Categories to help you easily
identify what might be a good fit for a Custom Scalar.

For each field you have left now after the last section:
 Write down whether any of the contracts below applies

Unit Contract
It has a Unit Contract if...
 The docs for the field mention a unit height: Float! # patient's height in inches
 The field name mentions a unit degreesCelsius: Float!
 Note that Units don't just have to be temperatures, lengths, speeds, positional
coordinates. Star ratings are also a unit of measurement (would you rate a book "5", or "5
stars"? "5" isn't very meaningful without a unit). "OutOf10" is also a type of unit.

Format Contract
 The docs mention a particular format or Standard, example: countryCode: String! # ISO

3166-1 alpha-2 code for this country.

 createdAt: Int! -- POSIX time

Context Contract - "Make sure you use this in the right place"
 url: String! if this were a URL Scalar, it would allow you to enforce that it can only be
used where a URL should be used (like in an href attribute).
 imageUrl: String! (we want to make sure this is only used as).
 discountCode: String! (I sure hope we don't try to apply a discount code using
something other than a discount code! That would lead to some frustrating bugs!)
 authToken: String!

Id Contract
GraphQL provides an Id Scalar by default. I recommend against using this type as it is to
general. Instead, I recommend creating a Custom Scalar for each type of Id in your system.
There's really not a lot of overhead, and there are a lot of benefits!

You can think of this as a special case of a Context Contract.
 type Product { productId: Id! } - better to use type Product { id: ProductId! } . That
way you can't
 userId: String!

Otherwise, perhaps it represents one of these things which may be great as is and not as a
Custom Scalar:
 count: Int!
 description: String!

Enumeration Contract
 Its comment enumerates a discrete number of options: price: String # either $, $$, $

$$, $$$$, or null if we don't have price available for business

 You know that it can have discrete values, like sortOrder: String! , or dayOfWeek: Int!

All of these are contracts. And Custom Scalars are just a way to represent contracts!!!
Use them, you'll love it!!

Everything Else - Raw Data
Anything else essentially just represents raw data, with no special format, no special units,
no finite amount.
Here are some examples of raw data that has no unit, format, or discrete options:
 firstName: String , lastName: String
 address1: String! , address2: String
 city: String!
 totalCount: Int!
 articleBody: String!
 title: String!

That doesn't mean it's bad to represent any of these things as Custom Scalars if you have
some reason to. You might want to start with the low hanging fruit of all the others
Contract Categories, though, and then sleep on the fields in this category. Instead, I
would make sure that these are in a nicely named GraphQL Object ... Objects can give
semantic meaning in a way that is similar to a Custom Scalar.

3. Use Some Custom Scalars!

Now comes the fun part! Go through everything that met one of the above Contract

Categories, and change its type.

 Take all of your Enum Contracts and turn them into GraphQL Enums.
 Take all the other contracts and turn them into Custom Scalars.

